Hranolová vazba

5.1 Úplný odraz na rozhraní dvou prostředí

Reflexní a transmisní jevy na rozhraních můžeme obecně řešit pomocí totální (celkové) matice M systému. Jestliže předpokládáme, že je systém tvořen N tenkými vrstvami s indexováním 1,2,...,N a superstrátem 0 a substrátem (N + 1), můžeme pro celkovou matici systému psát

$$M = \left[D^{(0)}\right]^{-1} D^{(1)} P^{(1)} \left[D^{(1)}\right]^{-1} \dots D^{(N)} P^{(N)} \left[D^{(N)}\right]^{-1} D^{(N+1)}, \qquad (5.1.1)$$

kde D^n (n = 0,1,...,N + 1) jsou tzv. dynamické matice a $P^j(j = 1,...,N)$ matice šíření. Pro zjednodušení řešení se zavádí tzv. charakteristická matice *j*-té vrstvy:

$$S^{j} = D^{(j)} P^{(j)} \left[D^{(j)} \right]^{-1}.$$
 (5.1.2)

Na základě znalosti prvků celkové matice M

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{bmatrix}.$$
 (5.1.3)

Můžeme vyjádřit reflexní koeficienty následovně:

$$r_{12} = \left(\frac{E_{02}^{(0)}}{E_{01}^{(0)}}\right)_{E_{03}^{(0)}=0} = \frac{M_{21}M_{33} - M_{23}M_{31}}{M_{11}M_{33} - M_{13}M_{31}},$$
(5.1.4)

$$r_{14} = \left(\frac{E_{04}^{(0)}}{E_{01}^{(0)}}\right)_{E_{03}^{(0)}=0} = \frac{M_{41}M_{33} - M_{43}M_{31}}{M_{11}M_{33} - M_{13}M_{31}},$$
(5.1.5)

$$r_{34} = \left(\frac{E_{04}^{(0)}}{E_{03}^{(0)}}\right)_{E_{01}^{(0)}=0} = \frac{M_{11}M_{43} - M_{41}M_{13}}{M_{11}M_{33} - M_{13}M_{31}},$$
(5.1.6)

$$r_{34} = \left(\frac{E_{02}^{(0)}}{E_{03}^{(0)}}\right)_{E_{01}^{(0)}=0} = \frac{M_{11}M_{23} - M_{21}M_{13}}{M_{11}M_{33} - M_{13}M_{31}},$$
(5.1.7)

kde $E^0_{(0p)}(p = 1,2,3,4)$ je komplexní amplituda intenzity elektrického pole *p*-tého módu v prostředí dopadu elektromagnetické vlny (index (0)).

Pro případ jediného rozhraní (0-1) se vyjádření celkové matice systému M transformuje do tvaru

$$M = \left[D^{(0)}\right]^{-1} D^{(1)}.$$
 (5.1.8)

5.1.1 Úplný odraz na rozhraní dvou izotropních dielektrických prostředí

Budeme předpokládat, ve shodě s předchozím, že elektromagnetická vlna dopadá z prostředí (0) na prostředí (1). Na rozhraní obou prostředí dochází obecně k reflexním a transmisním jevům.

Pro inverzní dynamickou matici v prostředí (0) můžeme psát:

$$\left[D^{(0)}\right]^{-1}D^{(1)} = \frac{1}{2N^{(0)}\cos\varphi^{(0)}} \begin{bmatrix} N^{(0)}\cos\varphi^{(0)} & 1 & 0 & 0\\ N^{(0)}\cos\varphi^{(0)} & -1 & 0 & 0\\ 0 & 0 & N^{(0)} & -\cos\varphi^{(0)}\\ 0 & 0 & N^{(0)} & \cos\varphi^{(0)} \end{bmatrix}.$$
 (5.1.9)

Dynamickou matici v prostředí (1) v případě úplného odrazu na rozhraní 0–1 můžeme vyjádřit ve tvaru:

$$D^{(1)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ iN^{(1)}\cos\varphi^{(1)} & -iN^{(1)}\cos\varphi^{(1)} & 0 & 0 \\ 0 & 0 & i\cos\varphi^{(1)} & i\cos\varphi^{(1)} \\ 0 & 0 & -N^{(1)} & N^{(1)} \end{bmatrix}.$$
 (5.1.10)

V relacích (5.1.9) a (5.1.10) výrazy $N^{(l)}$ (l = 0,1) značí index lomu daného prostředí, $\varphi^{(0)}$ je úhel dopadu a $\varphi^{(1)}$ úhel lomu (s ohledem na předpoklad úplneho odrazu musíme počítat, že příslušný směrový kosinus je komplexní). Na základě relací (5.1.8), (5.1.9) a (5.1.10) můžeme specifikovat celkovou matici rozhraní:

$$M = \frac{1}{2N^{(0)}\cos\varphi^{(0)}} \tag{5.1.11}$$

$N^{(0)}\cos\varphi^{(0)} + iN^{(1)}\cos\varphi^{(1)}$	$N^{(0)}\cos\varphi^{(0)} - iN^{(1)}\cos\varphi^{(1)}$	0	0 7
$N^{(0)}\cos\varphi^{(0)} - \mathrm{i}N^{(1)}\cos\varphi^{(1)}$	$N^{(0)}\cos\varphi^{(0)} + iN^{(1)}\cos\varphi^{(1)}$	0	0
0	0	$iN^{(0)}\cos\varphi^{(1)} + N^{(1)}\cos\varphi^{(0)}$	$iN^{(0)}\cos\varphi^{(1)} - N^{(1)}\cos\varphi^{(0)}$
0	0	$i N^{(0)} \cos \varphi^{(1)} - N^{(1)} \cos \varphi^{(0)}$	$i N^{(0)} \cos \varphi^{(1)} + N^{(1)} \cos \varphi^{(0)}$

S pomocí vztahů (5.1.4) až (5.1.7) a (5.1.11) můžeme vyjádřit příslušné reflexní koeficienty:

$$r_{12} = r_{ss} = \frac{M_{21}}{M_{11}} = \frac{N^{(0)} \cos\varphi^{(0)} - iN^{(1)} \cos\varphi^{(1)}}{N^{(0)} \cos\varphi^{(0)} + iN^{(1)} \cos\varphi^{(1)}}.$$
(5.1.12)

Výraz (5.1.12) můžeme upravit do tvaru

$$r_{ss} = \left[\frac{N^{(0)}\cos\varphi^{(0)} - iN^{(1)}\cos\varphi^{(1)}}{N^{(0)}\cos\varphi^{(0)} + iN^{(1)}\cos\varphi^{(1)}}\right] \left[\frac{N^{(0)}\cos\varphi^{(0)} - iN^{(1)}\cos\varphi^{(1)}}{N^{(0)}\cos\varphi^{(0)} - iN^{(1)}\cos\varphi^{(1)}}\right] =$$

$$=\frac{\left[N^{(0)}\cos\varphi^{(0)}\right]^2 - \left[N^{(1)}\cos\varphi^{(1)}\right]^2 - i2N^{(0)}\cos\varphi^{(0)}N^{(1)}\cos\varphi^{(1)}}{\left[N^{(0)}\cos\varphi^{(0)}\right]^2 + \left[N^{(1)}\cos\varphi^{(1)}\right]^2}.$$
 (5.1.13)

Vidíme, že

$$|r_{ss}| = \left\{ \left(\frac{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 - \left[N^{(1)} \cos\varphi^{(1)} \right]^2}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2} \right)^2 + \left(\frac{\left[-2N^{(0)} \cos\varphi^{(0)} N^{(1)} \cos\varphi^{(1)} \right]}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2} \right)^2 \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 - \left[N^{(1)} \cos\varphi^{(1)} \right]^2}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 - \left[N^{(1)} \cos\varphi^{(1)} \right]^2}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 - \left[N^{(1)} \cos\varphi^{(1)} \right]^2}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1$$

$$= \left\{ \frac{\left(\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2 \right)^2}{\left(\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2 \right)^2} \right\}^{\frac{1}{2}} = 1$$
(5.1.14)

Relace (5.1.14) potvrzuje podmínku úplného odrazu na rozhraní 0-1 pro *s*-polarizovanou vlnu. Pro případ *p*-polarizace platí (viz vztah (5.1.6) a matice (5.1.11)):

$$r_{pp} = \frac{M_{43}}{M_{33}} = \frac{\mathrm{i}N^{(0)}\mathrm{cos}\varphi^{(1)} - N^{(1)}\mathrm{cos}\varphi^{(0)}}{\mathrm{i}N^{(0)}\mathrm{cos}\varphi^{(1)} + \mathrm{i}N^{(1)}\mathrm{cos}\varphi^{(0)}}.$$
(5.1.15)

Opět provedeme obdobnou úpravu jako u relace ve vztahu (5.1.13):

$$r_{pp} = \left[\frac{-N^{(1)}\cos\varphi^{(0)} + iN^{(0)}\cos\varphi^{(1)}}{N^{(1)}\cos\varphi^{(0)} + iN^{(0)}\cos\varphi^{(1)}}\right] \left[\frac{N^{(1)}\cos\varphi^{(0)} - iN^{(0)}\cos\varphi^{(1)}}{N^{(1)}\cos\varphi^{(0)} - iN^{(0)}\cos\varphi^{(1)}}\right] = \frac{\left[N^{(0)}\cos\varphi^{(1)}\right]^2 - \left[N^{(1)}\cos\varphi^{(0)}\right]^2 + i2N^{(0)}\cos\varphi^{(1)}N^{(1)}\cos\varphi^{(0)}}{\left[N^{(1)}\cos\varphi^{(0)}\right]^2 + \left[N^{(0)}\cos\varphi^{(1)}\right]^2}.$$
 (5.1.16)

Vidíme, že

$$|r_{pp}| = \left\{ \left(\frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(1)} \cos\varphi^{(0)} \right]^2}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right)^2 + \left(\frac{\left[2N^{(0)} \cos\varphi^{(1)} N^{(1)} \cos\varphi^{(0)} \right]}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right)^2 \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(0)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(1)} \cos\varphi^{(0)} \right]^2 - \left[N^{(1)} \cos\varphi^{(0)} \right]^2}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(0)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(0)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(0)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(0)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(1)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(0)} \cos\varphi^{(1)} \right]^2 - \left[N^{(0)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(1)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(1)} \cos\varphi^{(1)} \right]^2 - \left[N^{(1)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(1)} \right]^2 + \left[N^{(1)} \cos\varphi^{(1)} \right]^2} \right\}^{\frac{1}{2}} \right\}^{\frac{1}{2}} = \frac{1}{2} \left\{ \frac{\left[N^{(1)} \cos\varphi^{(1)} \right]^2 - \left[N^{(1)} \cos\varphi^{(1)} \right]^2}{\left[N^{(1)} \cos\varphi^{(1)} \right]^2 + \left[N^{($$

$$= \left\{ \frac{\left(\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2 \right)^2}{\left(\left[N^{(1)} \cos\varphi^{(0)} \right]^2 + \left[N^{(0)} \cos\varphi^{(1)} \right]^2 \right)^2} \right\}^{\frac{1}{2}} = 1.$$
(5.1.17)

Relace (5.1.17) potvrzuje podmínku úplného odrazu na rozhraní 0-1 pro p-polarizovanou vlnu. V případě výpočtu fází reflexních členů ze vztahů (5.1.13) a (5.1.16) dostáváme:

$$\phi_{ss} = \operatorname{arctg} \frac{\Im r_{ss}}{\Re r_{ss}} = \operatorname{arctg} \frac{-2N^{(0)}\cos\varphi^{(0)}N^{(1)}\cos\varphi^{(1)}}{\left[N^{(0)}\cos\varphi^{(0)}\right]^2 - \left[N^{(1)}\cos\varphi^{(1)}\right]^2}.$$
(5.1.18)

$$\phi_{pp} = \operatorname{arctg} \frac{\Im r_{pp}}{\Re r_{pp}} = \operatorname{arctg} \frac{2N^{(0)} \cos\varphi^{(1)} N^{(1)} \cos\varphi^{(0)}}{\left[N^{(0)} \cos\varphi^{(1)}\right]^2 - \left[N^{(1)} \cos\varphi^{(0)}\right]^2}.$$
 (5.1.19)

5.1.2 Úplný odraz na rozhraní izotropního a anizotropního prostředí

Transverzální konfigurace anizotropního prostředí

Dynamickou matici pro anizotropní prostředí s transverzální geometrií můžeme vyjádřit ve tvaru :

$$D^{(1)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ D_{21}^{(1)} & -D_{21}^{(1)} & 0 & 0 \\ 0 & 0 & D_{33}^{(1)} & D_{33}^{(1)} \\ 0 & 0 & D_{43}^{(1)} & D_{44}^{(1)} \end{bmatrix},$$
 (5.1.20)

kde

$$D_{21}^{(1)} = N_{z1}^{(1)},$$

$$D_{33}^{(1)} = \epsilon_0^{(1)} - N_y^2,$$

$$D_{43}^{(1)} = -\left(-iN_y\epsilon_1^{(1)} + N_{z3}^{(1)}\epsilon_0^{(1)}\right),$$

$$D_{44}^{(1)} = -\left(-iN_y\epsilon_1^{(1)} + N_{z4}^{(1)}\epsilon_0^{(1)}\right).$$
(5.1.21)

Prvky $N^{(1)}_{zj}$ můžeme s uvážením podmínky úplného odrazu vyjádřit ve tvaru:

$$N_{z1}^{(1)} = i \left(\epsilon_0^{(1)} - N_y^{(2)}\right)^{\frac{1}{2}}$$

$$N_{z3,4}^{(1)} = i \left(2\epsilon_0^{(1)}\right)^{-1} \left\{ \pm \left[4\epsilon_0^{(1)^2} \left(\epsilon_0^{(1)} - N_y^2\right) - 4\epsilon_1^{(1)^2} \epsilon_0^{(1)} \right]^{\frac{1}{2}} \right\}$$
(5.1.22)

Pro celkovou matici rozhraní tedy můžeme psát (viz (5.1.9) a (5.1.20)):

$$M = \begin{bmatrix} D^{(0)} \end{bmatrix}^{-1} D^{(1)} \frac{1}{2N^{(0)} \cos\varphi^{(0)}}$$

$$\begin{bmatrix} N^{(0)} \cos\varphi^{(0)} & 1 & 0 & 0\\ N^{(0)} \cos\varphi^{(0)} & -1 & 0 & 0\\ 0 & 0 & N^{(0)} & -\cos\varphi^{(0)}\\ 0 & 0 & N^{(0)} & \cos\varphi^{(0)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0\\ D_{21}^{(1)} & -D_{21}^{(1)} & 0 & 0\\ 0 & 0 & D_{33}^{(1)} & D_{33}^{(1)}\\ 0 & 0 & D_{43}^{(1)} & D_{44}^{(1)} \end{bmatrix} = (5.1.23)$$

$$= \frac{1}{2N^{(0)} \cos\varphi^{(0)}}$$

$$\begin{bmatrix} N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)} & N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)} & 0 & 0 \\ 0 & 0 & D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} - D_{44}^{(1)}\cos\varphi^{(0)} \\ 0 & 0 & D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} + D_{44}^{(1)}\cos\varphi^{(0)} \end{bmatrix}.$$

Ze soustavy rovnic (5.1.23) je zřejmé, že při odrazu na uvedeném typu rozhraní nedochází ke změně polarizací (blokově diagonalizovaná matice M). S využitím vztahů (5.1.4), (5.1.6) a (5.1.23) můžeme vyjádřit reflexní koeficienty:

$$r_{ss} = \frac{N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)}}{N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}},$$
(5.1.24)

$$r_{pp} = \frac{D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)}}{D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}}.$$
(5.1.25)

Dosazením ze vztahů (5.1.21) a (5.1.22) dostáváme:

$$r_{ss} = \frac{N^{(0)} \cos\varphi^{(0)} - i\left(\epsilon_0^{(1)} - N_y^2\right)^{\frac{1}{2}}}{N^{(0)} \cos\varphi^{(0)} + i\left(\epsilon_0^{(1)} - N_y^2\right)^{\frac{1}{2}}} =$$

$$=\frac{\left[N^{(0)}\cos\varphi^{(0)}-i\left(\epsilon_{0}^{(1)}-N_{y}^{2}\right)^{\frac{1}{2}}\right]\left[N^{(0)}\cos\varphi^{(0)}-i\left(\epsilon_{0}^{(1)}-N_{y}^{2}\right)^{\frac{1}{2}}\right]}{\left[N^{(0)}\cos\varphi^{(0)}+i\left(\epsilon_{0}^{(1)}-N_{y}^{2}\right)^{\frac{1}{2}}\right]\left[N^{(0)}\cos\varphi^{(0)}-i\left(\epsilon_{0}^{(1)}-N_{y}^{2}\right)^{\frac{1}{2}}\right]}=$$

$$=\frac{\left[N^{(0)}\cos\varphi^{(0)}\right]^2 - \left(\epsilon_0^{(1)} - N_y^2\right) - i2N^{(0)}\cos\varphi^{(0)}\left(\epsilon_0^{(1)} - N_y^2\right)^{\frac{1}{2}}}{\left[N^{(0)}\cos\varphi^{(0)}\right]^2 + \left(\epsilon_0^{(1)} - N_y^2\right)}.$$
 (5.1.26)

Vidíme, že

$$|r_{ss}| = \left\{ \left(\frac{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 - \left(\epsilon_0^{(1)} - N_y^2 \right)}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left(\epsilon_0^{(1)} - N_y^2 \right)} \right)^2 + \left(\frac{-2N^{(0)} \cos\varphi^{(0)} \left(\epsilon_0^{(1)} - N_y^2 \right)^{\frac{1}{2}}}{\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left(\epsilon_0^{(1)} - N_y^2 \right)^2 \right)^2} \right\}^{\frac{1}{2}} = \left\{ \frac{\left(\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left(\epsilon_0^{(1)} - N_y^2 \right)^2 \right)^2}{\left(\left[N^{(0)} \cos\varphi^{(0)} \right]^2 + \left(\epsilon_0^{(1)} - N_y^2 \right)^2 \right)^2} \right\}^{\frac{1}{2}} = 1.$$
 (5.1.27)

Fázi reflexního koeficientu rss můžeme zapsat ve tvaru:

$$\phi_{ss} = \arctan \frac{\Im r_{ss}}{\Re r_{ss}} = \arctan \frac{-2N^{(0)}\cos\varphi^{(0)} \left(\epsilon_0^{(1)} - N_y^2\right)^{\frac{1}{2}}}{\left[N^{(0)}\cos\varphi^{(0)}\right]^2 - \left(\epsilon_0^{(1)} - N_y^2\right)}.$$
(5.1.28)

Dosazením ze vztahů (5.1.21) a (5.1.22) do reflexního koeficient
u r_{pp} dostáváme:

$$r_{pp} = \frac{N^{(0)} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right) - \left(-iN_{y}\epsilon_{1}^{(1)} + i\left(2\epsilon_{0}^{(1)}\right)^{-1} \left\{+\left[4\epsilon_{0}^{(1)^{2}} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right) - 4\epsilon_{1}^{(1)^{2}} \epsilon_{0}^{(1)}\right]^{\frac{1}{2}}\right\} \epsilon_{0}^{(1)}\right) \cos\varphi^{(0)}}{N^{(0)} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right) + \left(-iN_{y}\epsilon_{1}^{(1)} + i\left(2\epsilon_{0}^{(1)}\right)^{-1} \left\{+\left[4\epsilon_{0}^{(1)^{2}} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right) - 4\epsilon_{1}^{(1)^{2}} \epsilon_{0}^{(1)}\right]^{\frac{1}{2}}\right\} \epsilon_{0}^{(1)}\right) \cos\varphi^{(0)}}.$$
(5.1.29)

Výraz (5.1.29) můžeme zapsat ve tvaru:

$$r_{pp} = \frac{A - iB}{A + iB} = \frac{A^2 - B^2 - i2AB}{A^2 + B^2},$$
(5.1.30)

 ${\rm kde}$

$$A = N^{(0)} \left(\epsilon_0^{(1)} - N_y^2 \right), \tag{5.1.31}$$

$$B = \left(-N_y \epsilon_1^{(1)} + \left(2\epsilon_0^{(1)}\right)^{-1} \left\{+\left[4\epsilon_0^{(1)^2} \left(\epsilon_0^{(1)} - N_y^2\right) - 4\epsilon_1^{(1)^2} \epsilon_0^{(1)}\right]^{\frac{1}{2}}\right\} \epsilon_0^{(1)}\right) \cos\varphi^{(0)}.(5.1.32)$$

Z relace (5.1.30) jednoduše vyplývá:

$$|r_{pp}| = 1. (5.1.33)$$

Fázi reflexního koeficientu r_{pp} vypočteme ze vztahu (viz $\left(5.1.30\right)\right)$

$$\phi_{pp} = \operatorname{arctg} \frac{-2AB}{A^2 - B^2},\tag{5.1.34}$$

kde za A a B dosadíme z relací (5.1.31) a (5.1.32).

Longitudinální konfigurace anizotropního prostředí

Dynamickou matici pro anizotropní prostředí s longitudinální geometrií můžeme vyjádřit ve tvaru:

$$D^{(1)} = \begin{bmatrix} D_{11}^{(1)} & -D_{11}^{(1)} & D_{13}^{(1)} & -D_{13}^{(1)} \\ D_{21}^{(1)} & -D_{21}^{(1)} & D_{23}^{(1)} & D_{23}^{(1)} \\ D_{31}^{(1)} & D_{31}^{(1)} & D_{33}^{(1)} & D_{33}^{(1)} \\ D_{41}^{(1)} & -D_{41}^{(1)} & D_{43}^{(1)} & -D_{43}^{(1)} \end{bmatrix},$$
(5.1.35)

 ${\rm kde}$

$$D_{11}^{(1)} = -i\epsilon_{1}^{(1)}N_{y}N_{z}^{(1)+},$$

$$D_{13}^{(1)} = -i\epsilon_{1}^{(1)}N_{y}N_{z}^{(1)-},$$

$$D_{21}^{(1)} = -i\epsilon_{1}^{(1)}N_{y}N_{z}^{(1)+2},$$

$$D_{23}^{(1)} = -i\epsilon_{1}^{(1)}N_{y}N_{z}^{(1)-2},$$

$$D_{31}^{(1)} = \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right)\left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)+2}\right) - \epsilon_{1}^{(1)^{2}},$$

$$D_{33}^{(1)} = \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right)\left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)-2}\right) - \epsilon_{1}^{(1)^{2}},$$

$$D_{41}^{(1)} = N_{z}^{(1)+}\left[\epsilon_{0}^{(1)}\left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)+2}\right) - \epsilon_{1}^{(1)^{2}}\right],$$

$$D_{43}^{(1)} = N_{z}^{(1)-}\left[\epsilon_{0}^{(1)}\left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)-2}\right) - \epsilon_{1}^{(1)^{2}}\right].$$
(5.1.36)

Prvky $N_z^{(1)\pm}$ můžeme pomocí vztahu (25.18) a s uvážením podmínky úplného odrazu vyjádřit ve tvaru:

$$N_z^{(1)\pm} = i \left[\epsilon_0^{(1)} - N_y^2 \pm \epsilon_1^{(1)} N_y \left(\epsilon_0^{(1)} \right)^{-\frac{1}{2}} \right]^{\frac{1}{2}}.$$
 (5.1.37)

Pro celkovou matici rozhraní tedy můžeme psát (viz (5.1.9) a (5.1.35)):

$$M = \left[D^{(0)}\right]^{-1} D^{(1)} \frac{1}{2N^{(0)} \cos\varphi^{(0)}}$$
(5.1.38)

$$\begin{bmatrix} N^{(0)}\cos\varphi^{(0)} & 1 & 0 & 0\\ N^{(0)}\cos\varphi^{(0)} & -1 & 0 & 0\\ 0 & 0 & N^{(0)} & -\cos\varphi^{(0)}\\ 0 & 0 & N^{(0)} & \cos\varphi^{(0)} \end{bmatrix} \begin{bmatrix} D^{(1)}_{11} & -D^{(1)}_{11} & D^{(1)}_{13} & -D^{(1)}_{13}\\ D^{(1)}_{21} & -D^{(1)}_{21} & D^{(1)}_{23} & D^{(1)}_{23}\\ D^{(1)}_{31} & D^{(1)}_{31} & D^{(1)}_{33} & D^{(1)}_{33}\\ D^{(1)}_{41} & -D^{(1)}_{41} & D^{(1)}_{43} & -D^{(1)}_{43} \end{bmatrix} =$$

$$=\frac{1}{2N^{(0)}\cos\varphi^{(0)}}$$

$$\begin{bmatrix} D_{11}^{(1)}N^{(0)} + D_{21}^{(1)} & -D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)} & D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)} & -D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)} \\ D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)} & -D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)} & D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)} & -D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)} \\ D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)} & D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)} \\ D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)} & D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)} \end{bmatrix} \end{bmatrix}^{-1}$$

Matice (5.1.38) není již blokově diagonalizovaná a při odrazu vlny dochází k polarizačním změnám (jsou nenulové reflexní koeficienty specifikované rovnicemi (5.1.5) a (5.1.7)). S využitím vztahů (5.1.4), (5.1.6) a (5.1.38) můžeme vyjádřit reflexní koeficienty:

$$r_{12} = \frac{\left[-D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)}\right]\left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}{\left[D_{11}^{(1)}N^{(0)} + D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right]\left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}$$
(5.1.39)

$$r_{34} = \frac{\left[D_{11}^{(1)}N^{(0)} + D_{21}^{(1)}\right] \left[D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)}\right] \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right]}{\left[D_{11}^{(1)}N^{(0)} + D_{21}^{(1)}\right] \left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right] \left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}.$$
(5.1.40)

Stejným postupem s využitím relací (5.1.5) a (5.1.7) a matice rozhraní M (5.1.38) můžeme vyjádřit konverzní reflexní koeficienty v anizotropním prostředí rozhraní izotropní–anizotropní s longitudinálním uspořádáním:

$$r_{14} = \frac{\left[D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)}\right] \left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)}\right] \left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}{\left[D_{11}^{(1)}N^{(0)} + D_{21}^{(1)}\right] \left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right] \left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}$$
(5.1.41)
$$r_{32} = \frac{\left[D_{11}^{(1)}N^{(0)} + D_{21}^{(1)}\right] \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)}\right] - \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)}\right] \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]}{\left[D_{11}^{(1)}N^{(0)} + D_{21}^{(1)}\right] \left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right] \left[D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]} \right]$$
(5.1.42)

Polární konfigurace anizotropního prostředí

Dynamickou matici pro anizotropní prostředí s polární geometrií můžeme vyjádřit ve tvaru:

$$D^{(1)} = \begin{bmatrix} D_{11}^{(1)} & D_{11}^{(1)} & D_{11}^{(1)} & D_{11}^{(1)} \\ D_{21}^{(1)} & -D_{21}^{(1)} & D_{23}^{(1)} & -D_{23}^{(1)} \\ D_{31}^{(1)} & D_{31}^{(1)} & D_{33}^{(1)} & D_{33}^{(1)} \\ D_{41}^{(1)} & -D_{41}^{(1)} & D_{43}^{(1)} & -D_{43}^{(1)} \end{bmatrix},$$
(5.1.43)

kde

$$D_{11}^{(1)} = -i\epsilon_{1}^{(1)} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right),$$

$$D_{21}^{(1)} = N_{z}^{(1)+} \left[-i\epsilon_{1}^{(1)} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right)\right],$$

$$D_{23}^{(1)} = N_{z}^{(1)-} \left[-i\epsilon_{1}^{(1)} \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right)\right],$$

$$D_{31}^{(1)} = \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right) \left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)+2}\right),$$

$$D_{33}^{(1)} = \left(\epsilon_{0}^{(1)} - N_{y}^{2}\right) \left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)-2}\right),$$

$$D_{41}^{(1)} = -N_{z}^{(1)+}\epsilon_{0}^{(1)} \left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)+2}\right),$$

$$D_{43}^{(1)} = -N_{z}^{(1)-}\epsilon_{0}^{(1)} \left(\epsilon_{0}^{(1)} - N_{y}^{2} - N_{z}^{(1)-2}\right).$$
(5.1.44)

Prvky $N_z^{(1)\pm}$ můžeme pomocí vztahu (25.5) a s uvážením podmínky úplného odrazu vyjádřit ve tvaru:

$$N_z^{(1)\pm} = i \left[\epsilon_0^{(1)} - N_y^2 \pm \epsilon_1^{(1)} \left(\epsilon_0^{(1)} - N_y^2 \right)^{\frac{1}{2}} \left(\epsilon_0^{(1)} \right)^{-\frac{1}{2}} \right]^{\frac{1}{2}}.$$
 (5.1.45)

Pro celkovou matici rozhraní tedy můžeme psát (viz (5.1.9) a (5.1.43)):

$$M = \left[D^{(0)}\right]^{-1} D^{(1)} \frac{1}{2N^{(0)} \cos\varphi^{(0)}}$$
(5.1.46)

$$\begin{bmatrix} N^{(0)}\cos\varphi^{(0)} & 1 & 0 & 0\\ N^{(0)}\cos\varphi^{(0)} & -1 & 0 & 0\\ 0 & 0 & N^{(0)} & -\cos\varphi^{(0)}\\ 0 & 0 & N^{(0)} & \cos\varphi^{(0)} \end{bmatrix} \begin{bmatrix} D^{(1)}_{11} & D^{(1)}_{11} & D^{(1)}_{11} \\ D^{(1)}_{21} & -D^{(1)}_{21} & D^{(1)}_{23} & -D^{(1)}_{23}\\ D^{(1)}_{31} & D^{(1)}_{31} & D^{(1)}_{33} & D^{(1)}_{33}\\ D^{(1)}_{41} & -D^{(1)}_{41} & D^{(1)}_{43} & -D^{(1)}_{43} \end{bmatrix} = \frac{1}{2N^{(0)}\cos\varphi^{(0)}}$$

$$\begin{bmatrix} D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)} & D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)} & D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)} & D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)} \\ D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)} & D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)} & D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)} & D_{13}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)} \\ D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)} & D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)} \\ D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)} & D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)} & D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)} \end{bmatrix} \end{bmatrix} .$$

Matice (5.1.46) není již blokově diagonalizovaná a při odrazu vlny dochází k polarizačním změnám (jsou nenulové reflexní koeficienty specifikované rovnicemi (5.1.5) a (5.1.7)). S využitím vztahů (5.1.4), (5.1.6) a (5.1.46) můžeme vyjádřit reflexní koeficienty:

$$r_{12} = \frac{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)}\right]\left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right]\left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]},$$
(5.1.47)

 $r_{34} = \frac{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{31}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{41}^{(1)}\right]\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]}{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right]\left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}.$ (5.1.48)

Stejným postupem s využitím relací (5.1.5) a (5.1.7) a matice rozhraní M (5.1.46) můžeme vyjádřit konverzní reflexní koeficienty v anizotropním prostředí (rozhraní izotropní–anizotropní) s polárním uspořádáním.

$$r_{14} = \frac{\left[D_{31}^{(1)}N^{(0)} + D_{41}^{(1)}\cos\varphi^{(0)}\right] \left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{33}^{(1)}N^{(0)} + D_{43}^{(1)}\cos\varphi^{(0)}\right] \left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right] \left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right] \left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}, \quad (5.1.49)$$

 $r_{32} = \frac{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{23}^{(1)}\right] - \left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} - D_{21}^{(1)}\right]\left[D_{11}^{(1)}N^{(0)} - D_{21}^{(1)}\cos\varphi^{(0)}\right]}{\left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{21}^{(1)}\right]\left[D_{33}^{(1)}N^{(0)} - D_{43}^{(1)}\cos\varphi^{(0)}\right] - \left[D_{11}^{(1)}N^{(0)}\cos\varphi^{(0)} + D_{23}^{(1)}\right]\left[D_{31}^{(1)}N^{(0)} - D_{41}^{(1)}\cos\varphi^{(0)}\right]}.$ (5.1.50)

5.2 Charakteristická matice vazebního gapu

Při řešení problematiky specifikace charakteristické matice vazebního gapu je tato matice definována vztahem (bez indexování prostředí):

$$S = D P [D]^{-1}$$
. (5.2.1)

Pro popis jednotlivých členů matice S bude zapotřebí znát úhly šíření elektromagnetické vlny v daném prostředí. Vazebním gapem se rozumí oblast, kdy elektromagnetická vlna vykazuje na rozhraní úplný odraz, evanescentní vlna vstupuje do druhého prostředí a na následujícím rozhraní dochází k transferu do třetího prostředí. Typickým příkladem je aplikace vazebního hranolu pro generaci vedených vidů v planárním vlnovodu. Oblast mezi hranolem a vlnovodem je nazývána vazebním gapem a terminologicky se často hovoří o tunelovém efektu, který nastává mezi tímto hranolem a planární strukturou. Pro generaci evanescentní vlny v gapové oblasti je nutné, aby elektromagnetická vlna na hranolovou základnu dopadala pod úhlem větším, než je úhel kritický.

5.2.1 Úplný odraz na rozhraní

Pouze v rámci této subkapitoly si označme prostředís dopadajicí vlnou indexem (1) a prostředí, do kterého se láme vlna, indexem (2). Analogicky označíme indexy lomu n_1 a n_2 (předpokládáme nyní izotropní, bezeztrátové prostředí). Aby mohlo dojít ve zvoleném směru $1\rightarrow 2$ k úplnému odrazu, má platit:

$$n_1 > n_2.$$
 (5.2.2)

Z podmínky spojitosti složek na rozhraní vyplývá

$$k_1 \sin\varphi_1 = k_2 \sin\varphi_2, \tag{5.2.3}$$

kde

$$k_1 = \frac{\omega}{c} n_1,$$

$$k_2 = \frac{\omega}{c} n_2.$$
(5.2.4)

Označíme–li k_{2n} normálovou složku vlnového vektoru, můžeme psát

$$k_{2n}^2 = k_2^2 - k_{2t}^2 = k_2^2 - k_2^2 \sin^2 \varphi_2, \qquad (5.2.5)$$

S využitím (5.2.3) dostáváme:

$$k_{2n}^2 = k_2^2 - k_1^2 \sin^2 \varphi_1. \tag{5.2.6}$$

Dalším dosazením z relace (5.2.4):

$$k_{2n}^{2} = k_{2}^{2} - \left(\frac{\omega}{c}n_{1}\right)^{2}\sin^{2}\varphi_{1} = k_{2n}^{2} - \left(\frac{\omega}{c}n_{2}\right)^{2}\left(\frac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\varphi_{1}.$$
 (5.2.7)

Úpravou a aplikací (5.2.4) vychází:

$$k_{2n}^{2} = k_{2}^{2} \left[1 - \left(\frac{n_{1}}{n_{2}}\right)^{2} \sin^{2}\varphi_{1} \right] = k_{2}^{2} \cos^{2}\varphi_{2}.$$
 (5.2.8)

Dostáváme tedy, že

$$\cos\varphi_2 = \left[1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2\varphi_1\right]^{\frac{1}{2}}.$$
(5.2.9)

Nad kritickým úhlem (pro úplný odraz) je tedy $\cos \varphi_2$ ryze imaginární. Pro další úvahy je vhodná následující úvaha. Úpravou (5.58) dostáváme (uvažujeme případ úplného odrazu):

$$k_{2n}^2 = -k_2^2 \left[\left(\frac{n_1}{n_2} \right)^2 \sin^2 \varphi_1 - 1 \right].$$
 (5.2.10)

Ze Snellova zákonu lomu vyplývá

$$\frac{\sin\varphi_1}{\sin\varphi_2} = \frac{n_2}{n_1}.\tag{5.2.11}$$

Pro kritický úhel $\varphi_1=\varphi_c$ platí, že $\varphi_2=90^\circ$ a tedy

$$\sin\varphi_2 = 1. \tag{5.2.12}$$

Na základě relací (5.2.11) a (5.2.12) tedy můžeme psát

$$\sin\varphi_c = \frac{n_2}{n_1}.\tag{5.2.13}$$

Aplikací relace (5.2.13) v relaci (5.2.10) vychází

$$k_{2n}^2 = -k_2^2 \left[\left(\frac{\sin\varphi_1}{\sin\varphi_c} \right)^2 - 1 \right] = -K^2, \qquad (5.2.14)$$

kde K > 0 (pro úplný odraz $\sin \varphi_1 > \sin \varphi_c$). Odmocněním vztahu (5.2.14) dostáváme

$$k_{2n} = \pm \mathrm{i}K,\tag{5.2.15}$$

a dosazením do výrazu zachycujícího šíření vlny v prostoru

$$e^{ik_{2n}z} = e^{\mp Kz}.$$
 (5.2.16)

Protože předpokládáme postup vlny v kladném smyslu os
yzvyloučíme kladné znaménko (+) v exponentu vedoucí k exponenciálně rostoucí vlně a vybereme tedy na základě vztahů (5.2.15) a (5.2.16):

$$k_{2n} = iK,$$

 $ik_{2n} = -K.$ (5.2.17)

Z relace (5.2.10) tedy vyplývá:

$$K = k_2 \left[\left(\frac{n_1}{n_2} \right)^2 \sin^2 \varphi_1 - 1 \right]^{\frac{1}{2}}.$$
 (5.2.18)

Poněvadž

$$k_{2n} = k_2 \cos\varphi_2, \tag{5.2.19}$$

můžeme pomocí rovnic (5.2.17) a (5.2.18) vyjádřit

$$\cos\varphi_2 = i \left[\left(\frac{n_1}{n_2} \right)^2 \sin^2 \varphi_1 - 1 \right]^{\frac{1}{2}}.$$
 (5.2.20)

5.2.2 Charakteristická matice vazebního gapu

Při specifikaci charakteristické matice vychazíme z definičního vztahu (5.2.1). Jak již bylo uvedeno výše, nebudeme nyni indexovat z důvodu jednoduchosti prostředí. V dynamických maticích relace (5.2.1) využijeme vztahu (5.2.20). V matici propagační je příčná konstanta šíření β definována vztahem:

$$\beta = \frac{\omega}{c} N i \left[\left(\frac{n_p}{N} \right)^2 \sin^2 \varphi_p - 1 \right]^{\frac{1}{2}} t, \qquad (5.2.21)$$

kde jsme označili n_p jako index lomu prostředí, kde dochazí k úplnému odrazu (nejčastěji se používá jako vazebního prvku hranolu a proto n_p), N reprezentuje index lomu prostředí gapu, φ_p je úhel dopadu rovinné vlny na kontaktní plochu hranolu (vůči normále). t je tloušťka vazebního gapu. Stejnou symboliku využíváme i při dosazení do dynamickych matic ($\cos\varphi$). S využitím vztahů (5.2.4) a (5.2.5) až (5.2.10) můžeme charakteristickou matici S vazebního gapu vyjádřit ve tvaru:

$$S = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix},$$
(5.2.22)

kde

$$S_{11} = S_{22} = S_{33} = S_{44} = \frac{1}{2} \left(e^{i\beta} + e^{-i\beta} \right), \qquad (5.2.23)$$

$$S_{12} = \frac{1}{2} \frac{e^{i\beta} - e^{-i\beta}}{N \cos\varphi}, \qquad (5.2.24)$$

$$S_{13} = S_{14} = S_{23} = S_{24} = S_{31} = S_{32} = S_{41} = S_{42} = 0, (5.2.25)$$

$$S_{21} = \frac{1}{2} \left(N \cos \varphi e^{i\beta} - N \cos \varphi e^{-i\beta} \right), \qquad (5.2.26)$$

$$S_{34} = \frac{1}{2} \left(-\frac{\cos\varphi}{N} e^{i\beta} + \frac{\cos\varphi}{N} e^{-i\beta} \right), \qquad (5.2.27)$$

$$S_{43} = \frac{1}{2} \left(-\frac{N}{\cos\varphi} e^{\mathbf{i}\beta} + \frac{N}{\cos\varphi} e^{-\mathbf{i}\beta} \right).$$
 (5.2.28)

V experimentální praxi je velmi často vazební gap tvořen vzduchovou mezerou. V tomto případě můžeme úhel lomu, příčnou konstantu šíření a prvky matice S vyjádřit ve tvaru:

$$\cos\varphi = i \left[(n_P)^2 \sin\varphi_P - 1 \right]^{\frac{1}{2}},$$
 (5.2.29)

$$\beta = i\frac{\omega}{c} \left[(n_P)^2 \sin\varphi_P - 1 \right]^{\frac{1}{2}} t \qquad (5.2.30)$$

$$S_{11} = S_{22} = S_{33} = S_{44} = \frac{1}{2} \left(e^{i\beta} + e^{-i\beta} \right), \qquad (5.2.31)$$

$$S_{12} = \frac{1}{2} \frac{e^{i\beta} - e^{-i\beta}}{\cos\varphi}, \qquad (5.2.32)$$

$$S_{13} = S_{14} = S_{23} = S_{24} = S_{31} = S_{32} = S_{41} = S_{42} = 0,$$
(5.2.33)

$$S_{21} = \frac{1}{2} \left(\cos\varphi e^{i\beta} - \cos\varphi e^{-i\beta} \right), \qquad (5.2.34)$$

$$S_{34} = \frac{1}{2} \left(-\cos\varphi e^{i\beta} + \cos\varphi e^{-i\beta} \right), \qquad (5.2.35)$$

$$S_{43} = \frac{1}{2} \left(-\frac{e^{i\beta}}{\cos\varphi} + \frac{e^{-i\beta}}{\cos\varphi} \right).$$
 (5.2.36)

Jestliže si označíme

$$\beta = iA, \tag{5.2.37}$$

kde

$$A = \frac{\omega}{c} \left[\left(n_P \right)^2 \sin \varphi_P - 1 \right]^{\frac{1}{2}} t, \qquad (5.2.38)$$

Potom můžeme prvky charakteristické matice S vyjádřit (pro vzduchový gap) ve tvaru:

$$S_{11} = S_{22} = S_{33} = S_{44} = \frac{1}{2} \left(e^{-A} + e^{A} \right) = \cosh(A), \tag{5.2.39}$$

$$S_{12} = \frac{1}{2} \frac{e^{-A} - e^{A}}{\cos\varphi} = -\frac{\sinh(A)}{\cos\varphi},$$
 (5.2.40)

$$S_{13} = S_{14} = S_{23} = S_{24} = S_{31} = S_{32} = S_{41} = S_{42} = 0, (5.2.41)$$

$$S_{21} = \frac{1}{2} \left(\cos\varphi e^{-A} - \cos\varphi e^{A} \right) = -\cos\varphi \sinh(A), \qquad (5.2.42)$$

$$S_{34} = \frac{1}{2} \left(-\cos\varphi e^{-A} + \cos\varphi e^{A} \right) = \cos\varphi \sinh(A), \qquad (5.2.43)$$

$$S_{43} = \frac{1}{2} \left(-\frac{e^{-A}}{\cos\varphi} + \frac{e^{A}}{\cos\varphi} \right) = \frac{1}{\cos\varphi} \sinh(A).$$
 (5.2.44)

Jestliže si označíme (viz (1.2.29))

$$\cos\varphi = iB, \qquad (5.2.45)$$

kde

$$B = \left[(n_P)^2 \sin \varphi_P - 1 \right]^{\frac{1}{2}}, \qquad (5.2.46)$$

potom

$$S_{11} = S_{22} = S_{33} = S_{44} = \cosh(A), \tag{5.2.47}$$

$$S_{12} = \frac{\operatorname{isinh}(A)}{B},$$
 (5.2.48)

$$S_{13} = S_{14} = S_{23} = S_{24} = S_{31} = S_{32} = S_{41} = S_{42} = 0,$$
(5.2.49)
$$S_{21} = -iB \sinh(A),$$
(5.2.50)

$$f_{21} = -1B \sinh(A),$$
 (5.2.50)

$$S_{34} = 1B \sinh(A),$$
 (5.2.51)

$$S_{43} = -\frac{\mathrm{i}\,\sinh(A)}{B}.\tag{5.2.52}$$

5.3 Charakteristická matice anizotropního vazebního gapu v transverzální konfiguraci

Kapitole 5.2 byla odvozena charakteristická matice izotropního vazebního gapu. Pro z složku vlnového vektoru (v naší souřadné soustavě kolmá k rozhraní) bylo specifikováno (relace 5.2.17):

$$k_z^{(2)} = iK^{(2)}, (5.3.1)$$

kde K > 0. Pro směrový kosinus v bezeztrátovém a izotropním prostředí platí (viz např. 5.2.9):

$$\cos\varphi^{(2)} = \left[1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2\varphi^{(1)}\right]^{\frac{1}{2}}.$$
(5.3.2)

Pro úhly dopadu větší než je úhel kritický, je tento směrový kosinus ryze imaginární (viz (5.2.20)). Při šíření elektromagnetických vln v anizotropních prostředích vycházíme z řešení vlnové rovnice, kdy hledáme kořeny N_{zj} . Pomocí komplexních směrových kosinů můžeme psát

$$N_{zj}^{(2)} = N^{(2)} \cos \varphi_j^{(2)}. \tag{5.3.3}$$

V případě izotropního dielektrika platí (s využitím 5.3.1):

$$N_z^{(2)} = \frac{c}{\omega} k_z^{(2)} = i \frac{c}{\omega} K^{(2)}.$$
 (5.3.4)

a tedy veličina $N_z^{(2)}$ je ryze imaginární.

Pro případ izotropních gapů tedy směrové kosiny–vzhledem k (5.2.20)– vynásobíme imaginární jednotkou i. Tento proces se nám potom promítne i do specifikace kořenů N_{zj} . Ty můžeme určit tak, že řešíme vlnovou rovnici pro příslušný typ anizotropie a získané kořeny N_{zj} pro určení charakteristické matice vazebního gapu vynásobíme, vzhledem k relacím (5.3.3) a (5.3.4), imaginární jednotkou.

5.3.1 Charakteristická matice vazebního anizotropního gapu s transverzálním uspořádáním

Pro charakteristickou matici anizotropní vrstvy s transverzální konfigurací jsme odvodili (nebudeme používat indexování prostředí):

$$S = \begin{bmatrix} S_{11} & S_{12} & S_0 & S_0 \\ S_{21} & S_{22} & S_0 & S_0 \\ S_0 & S_0 & S_{33} & S_{34} \\ S_0 & S_0 & S_{43} & S_{44} \end{bmatrix},$$
(5.3.5)

kde

$$S_{11} = \left(L_{11}e^{i\beta^{+}} + L_{11}e^{-i\beta^{+}}\right) |D|^{-1},$$

$$S_{12} = \left(-L_{12}e^{i\beta^{+}} + L_{12}e^{-i\beta^{+}}\right) |D|^{-1},$$

$$S_{21} = \left(D_{21}L_{11}e^{i\beta^{+}} - D_{21}L_{11}e^{-i\beta^{+}}\right) |D|^{-1},$$

$$S_{22} = \left(-D_{21}L_{12}e^{i\beta^{+}} - D_{21}L_{12}e^{-i\beta^{+}}\right) |D|^{-1},$$

$$S_{33} = \left(D_{33}L_{33}e^{i\beta^{-}} + D_{33}L_{43}e^{-i\beta^{-}}\right) |D|^{-1},$$

$$S_{34} = \left(D_{33}L_{34}e^{i\beta^{-}} - D_{33}L_{34}e^{-i\beta^{-}}\right) |D|^{-1},$$

$$S_{43} = \left(D_{43}L_{33}e^{i\beta^{-}} + D_{44}L_{43}e^{-i\beta^{-}}\right) |D|^{-1},$$

$$S_{44} = \left(D_{43}L_{34}e^{i\beta^{-}} - D_{44}L_{34}e^{-i\beta^{-}}\right) |D|^{-1}.$$
(5.3.6)

Dosazením z relací (5.2.34) a (5.2.36) do vztahů (5.3.6) a úpravou dostáváme:

$$S_{11} = \frac{e^{i\beta^{+}} + e^{-i\beta^{+}}}{2},$$

$$S_{12} = \frac{1}{N_{z1}} \frac{e^{i\beta^{+}} - e^{-i\beta^{+}}}{2},$$

$$S_{21} = \frac{1}{N_{z1}} \frac{e^{i\beta^{+}} - e^{-i\beta^{+}}}{2},$$

$$S_{22} = \frac{e^{i\beta^{+}} + e^{-i\beta^{+}}}{2},$$

$$S_{34} = \frac{\varepsilon_{0} - N_{y}^{2}}{N_{z4}\varepsilon_{0}} \frac{e^{i\beta^{-}} - e^{-i\beta^{-}}}{2},$$

$$S_{33} = \frac{e^{i\beta^{-}} + e^{-i\beta^{-}}}{2} + \frac{iN_{y}\varepsilon_{1}}{N_{z3}\varepsilon_{0}} \frac{e^{i\beta^{-}} - e^{-i\beta^{-}}}{2},$$

$$S_{43} = \frac{-N_{z3}\varepsilon_{0}}{(\varepsilon_{0} - N_{y}^{2})} \frac{e^{i\beta^{-}} - e^{-i\beta^{-}}}{2} - \frac{N_{y}^{2}\varepsilon_{1}^{2}}{(\varepsilon_{0} - N_{y}^{2})N_{z3}\varepsilon_{0}} \frac{e^{i\beta^{-}} - e^{-i\beta^{-}}}{2},$$

$$S_{44} = \frac{e^{i\beta^{-}} + e^{-i\beta^{-}}}{2} + \frac{iN_{y}\varepsilon_{1}}{N_{z4}\varepsilon_{0}} \frac{e^{i\beta^{-}} - e^{-i\beta^{-}}}{2}.$$
(5.3.7)

Pro totální odraz můžeme psát:

$$N_{z1t} = iN_{z1},$$

$$N_{z2t} = iN_{z2},$$

$$N_{z3,4t} = iN_{z3,4},$$

$$\beta_t^{\pm} = i\beta^{\pm},$$

$$\beta^+ = \frac{\omega}{c}N_{z1}t,$$

$$\beta^- = \frac{\omega}{c}N_{z3}t.$$
(5.3.8)

Dosadíme-li výrazy (5.3.8) do prvků charakteristické matice (5.3.7) dostáváme:

$$S_{11} = \frac{e^{-\beta^{+}} + e^{\beta^{+}}}{2} = \cosh(\beta^{+}),$$

$$S_{12} = \frac{1}{iN_{z1}} \frac{e^{-\beta^{+}} - e^{\beta^{+}}}{2} = -\frac{1}{iN_{z1}} \frac{e^{\beta^{+}} - e^{-\beta^{+}}}{2} = \frac{1}{N_{z1}} \sinh(\beta^{+}),$$

$$S_{21} = iN_{z1} \frac{e^{-\beta^{+}} - e^{\beta^{+}}}{2} = -iN_{z1} \frac{e^{\beta^{+}} - e^{-\beta^{+}}}{2} = \frac{N_{z1}}{i} \sinh(\beta^{+}),$$

$$S_{22} = \frac{e^{-\beta^{+}} + e^{\beta^{+}}}{2} \cosh(\beta^{+}),$$

$$S_{33} = \frac{e^{-\beta^{-}} + e^{\beta^{-}}}{2} + \frac{iN_{y}\varepsilon_{1}}{N_{z3}\varepsilon_{0}} \frac{e^{-\beta^{-}} - e^{i\beta^{-}}}{2} = \cosh(\beta^{-}) - \frac{N_{y}\varepsilon_{1}}{N_{z3}\varepsilon_{0}} \sinh(\beta^{-}),$$

$$S_{34} = \frac{\varepsilon_{0} - N_{y}^{2}}{iN_{z4}\varepsilon_{0}} \frac{e^{-\beta^{-}} - e^{-\beta^{-}}}{2} = -\frac{\varepsilon_{0} - N_{y}^{2}}{iN_{z4}\varepsilon_{0}} \frac{e^{-\beta^{-}} - e^{-\beta^{-}}}{2} = \frac{i\left(\varepsilon_{0} - N_{y}^{2}\right)}{N_{z4}\varepsilon_{0}} \sinh(\beta^{-}),$$

$$S_{43} = \frac{-iN_{z3}\varepsilon_{0}}{\varepsilon_{0} - N_{y}^{2}} \frac{e^{-\beta^{-}} - e^{-\beta^{-}}}{2} - \frac{N_{y}^{2}\varepsilon_{1}^{2}}{(\varepsilon_{0} - N_{y}^{2}) iN_{z3}\varepsilon_{0}} \frac{e^{-\beta^{-}} - e^{-\beta^{-}}}{2} = ,$$

$$= \frac{iN_{z3}\varepsilon_{0}}{\varepsilon_{0} - N_{y}^{2}} \sinh(\beta^{-}) + \frac{N_{y}^{2}\varepsilon_{1}^{2}}{(\varepsilon_{0} - N_{y}^{2}) iN_{z3}\varepsilon_{0}} \sinh(\beta^{-}),$$

$$S_{44} = \frac{e^{-\beta^{-}} + e^{\beta^{-}}}{2} + \frac{iN_{y}\varepsilon_{1}}{iN_{z4}\varepsilon_{0}} \frac{e^{-\beta^{-}} - e^{-\beta^{-}}}{2} =$$

$$= \cosh(\beta^{+}) - \frac{N_{y}\varepsilon_{1}}{N_{z4}\varepsilon_{0}} \sinh(\beta^{-}).$$
(5.3.9)

 $\rm Při řadě výpočtů se ukazuje výhodným používat ultratenkou aproximaci:$

$$\cosh(\beta^{\pm}) = 1,$$

$$\sinh(\beta^{\pm}) = \beta^{\pm}.$$
(5.3.10)

Dosadíme-li tuto aproximaci (5.3.10) do prvků charakteristické matice S (5.3.9), dostáváme:

$$S_{11} = 1,$$

$$S_{12} = \frac{i\beta^{+}}{N_{z1}},$$

$$S_{21} = \frac{N_{z1}}{i}\beta^{+},$$

$$S_{22} = 1,$$

$$S_{33} = 1 - \frac{N_{y}\varepsilon_{1}}{N_{z3}\varepsilon_{0}}\beta^{-},$$

$$S_{34} = \frac{i(\varepsilon_{0} - N_{y}^{2})}{N_{z4}\varepsilon_{0}}\beta^{-},$$

$$S_{43} = \frac{iN_{z3}\varepsilon_{0}}{\varepsilon_{0} - N_{y}^{2}}\beta^{-} + \frac{N_{y}^{2}\varepsilon_{1}^{2}}{(\varepsilon_{0} - N_{y}^{2})iN_{z3}\varepsilon_{0}}\beta^{-},$$

$$S_{44} = 1 - \frac{N_{y}\varepsilon_{1}}{N_{z4}\varepsilon_{0}}\beta^{-}.$$

(5.3.11)

Z relace (25.30) vyplývá

$$N_{z4} = -N_{z3}. (5.3.12)$$

Můžeme tedy poslední dva prvky charakteristické matice ${\cal S}$ upravit:

$$S_{34} = \frac{i\left(\varepsilon_0 - N_y^2\right)}{N_{z3}\varepsilon_0}\beta^- = \frac{\left(\varepsilon_0 - N_y^2\right)}{iN_{z3}\varepsilon_0},$$

$$S_{44} = 1 - \frac{N_y\varepsilon_1}{N_{z3}\varepsilon_0}\beta^- = 1 + \frac{N_y\varepsilon_1}{N_{z3}\varepsilon_0}\beta^-.$$
(5.3.13)

Označme:

$$a = \frac{\left(\varepsilon_0 - N_y^2\right)}{iN_{z3}\varepsilon_0},$$

$$b = \frac{N_y\varepsilon_1}{N_{z3}\varepsilon_0}.$$

(5.3.14)

Potom prvky matice S (5.3.11) můžeme vyjádřit ve tvaru:

$$S_{11} = 1,$$

$$S_{12} = \frac{i\beta^{+}}{N_{z1}},$$

$$S_{21} = \frac{N_{z1}}{i}\beta^{+},$$

$$S_{22} = 1,$$

$$S_{33} = 1 - b\beta^{-},$$

$$S_{34} = a\beta^{-},$$

$$S_{43} = \frac{\beta^{-}}{a} + \frac{N_{y}\varepsilon_{1}}{i(\varepsilon_{0} - N_{y}^{2})}b\beta^{-},$$

$$S_{44} = 1 + b\beta^{-}.$$

(5.3.15)

Matici S potom souhrnně můžeme vyjádřit ve tvaru:

$$S = \begin{bmatrix} 1 & \frac{\mathrm{i}\beta^{+}}{N_{z1}} & 0 & 0\\ \frac{N_{z1}}{\mathrm{i}}\beta^{+} & 1 & 0 & 0\\ 0 & 0 & 1 - b\beta^{-} & a\beta^{-}\\ 0 & 0 & \frac{\beta^{-}}{a} + \frac{N_{y}\varepsilon_{1}}{\mathrm{i}(\varepsilon_{0} - N_{y}^{2})}b\beta^{-} & 1 + b\beta^{-} \end{bmatrix}.$$
 (5.3.16)

Matici S, která je dána prvky (5.3.9), lze využít při analýze vazebních podmínek při aplikaci ATR metody. Z jejich prvků lze stanovit při dané planární vlnovodné struktuře pozici synchronních úhlů, úhlovou pozici dopadajícího svazku při generaci povrchových plazmatů atd. V řadě aplikací je výhodné použít matici S, která byla realizována pro ultratenkou aproximaci (5.3.16) např. při studiu silných vazeb.

5.4 Vyjádření tunelového efektu pomocí charakteristických matic

Budeme uvažovat strukturu vazební hranol-index (p), gap (g), poloprostor transferu vlny (1). Celkovou situaci můžeme vyjádřit pomocí komplexní matice systému M, která v našem případě má tvar (nezahrnujeme normalizační matice hranolu a prostředí (1)):

$$M = \left[D^{(p)}\right]^{-1} D^{(g)} P^{(g)} \left[D^{(g)}\right]^{-1} D^{(1)}.$$
 (5.4.1)

Dílčí výraz v relaci (5.4.1)

$$S^{(g)} = D^{(g)} P^{(g)} \left[D^{(g)} \right]^{-1}$$
(5.4.2)

označíme jako charakteristikou matici vazebního gapu.

5.4.1 Charakteristická matice izotropního gapu

Pro vyjádření charakteristické matice izotropního gapu vyjdeme z analýz kapitoly 5.2. Na základě vztahu (5.2.20) (s jiným indexováním prostředí) můžeme psát

$$\cos\varphi^{(g)} = i \left[\left(\frac{N^{(p)}}{N^{(g)}} \right)^2 \sin^2 \varphi^{(p)} - 1 \right]^{\frac{1}{2}}.$$
 (5.4.3)

Relaci (5.2.11) vyjádříme ve tvaru:

$$\beta = i \frac{\omega}{c} N^{(g)} \left[\left(\frac{N^{(p)}}{N^{(g)}} \right)^2 \sin^2 \varphi^{(p)} - 1 \right]^{\frac{1}{2}} t.$$
 (5.4.4)

Označme si (ve vztahu (5.4.4)):

$$\beta = iA, \tag{5.4.5}$$

kde

$$A = \frac{\omega}{c} N^{(g)} \left[\left(\frac{N^{(p)}}{N^{(g)}} \right)^2 \sin^2 \varphi^{(p)} - 1 \right]^{\frac{1}{2}} t.$$
 (5.4.6)

Potom prvky charakteristické matice S (viz 5.2.39) nabývají tvaru:

$$S_{11} = S_{22} = S_{33} = S_{44} = \cosh(A),$$

$$S_{12} = -\frac{\sinh(A)}{N^{(g)}\cos\varphi^{(g)}},$$

$$S_{13} = S_{14} = S_{23} = S_{24} = S_{31} = S_{32} = S_{41} = S_{42} = 0,$$

$$S_{21} = -N^{(g)}\cos\varphi^{(g)}\sinh(A),$$

$$S_{34} = \frac{\cos\varphi^{(g)}}{N^{(g)}}\sinh(A),$$

$$S_{43} = \frac{N^{(g)}}{\cos\varphi^{(g)}}\sinh(A).$$
(5.4.7)

Dále si označme

$$\cos\varphi^{(g)} = iB, \tag{5.4.8}$$

 ${\rm kde}$

$$B = \left[\left(\frac{N^{(p)}}{N^{(g)}} \right)^2 \sin^2 \varphi^{(p)} - 1 \right]^{\frac{1}{2}}.$$
 (5.4.9)

Potom prvky charakteristické matice S nabývají tvaru:

$$S_{11} = S_{22} = S_{33} = S_{44} = \cosh(A),$$

$$S_{12} = -\frac{\sinh(A)}{N^{(g)}iB} = \frac{\sinh(A)}{N^{(g)}B},$$

$$S_{13} = S_{14} = S_{23} = S_{24} = S_{31} = S_{32} = S_{41} = S_{42} = 0,$$

$$S_{21} = -iN^{(g)}B\sinh(A),$$

$$S_{34} = \frac{iB}{N^{(g)}}\sinh(A),$$

$$S_{43} = \frac{N^{(g)}}{iB}\sinh(A) = -\frac{iN^{(g)}}{B}\sinh(A).$$
(5.4.10)

Matici ${\cal S}$ tedy můžeme vyjádřit ve tvaru:

$$S^{(g)} = \begin{bmatrix} \cosh(A) & \frac{i\sinh(A)}{N^{(g)}B} & 0 & 0\\ -iN^{(g)}B\sinh(A) & \cosh(A) & 0 & 0\\ 0 & 0 & \cosh(A) & \frac{iB\sinh(A)}{N^{(g)}}\\ 0 & 0 & -\frac{iN^{(g)}\sinh(A)}{B} & \cosh(A) \end{bmatrix}.$$
 (5.4.11)

Pro případ ultratenké aproximace můžeme psát:

$$\cosh(A) = 1,$$

$$\sinh(A) = A.$$
(5.4.12)

Z relací (5.4.7) a (5.4.9) vyplývá :

$$\frac{A}{B} = \frac{\omega}{c} N^{(g)} t. \tag{5.4.13}$$

Pro tuto aproximaci tedy charakteristická matic
e ${\cal S}$ potom nabývá tvaru (viz(5.4.11)):

$$S^{(g)} = \begin{bmatrix} 1 & i\frac{\omega}{c}t & 0 & 0\\ -iN^{(g)}AB & 1 & 0 & 0\\ 0 & 0 & 1 & \frac{iAB}{N^{(g)}}\\ 0 & 0 & -i\left(N^{(g)}\right)^2\frac{\omega}{c}t & 1 \end{bmatrix},$$
 (5.4.14)

kde jsme na základě vztahů (5.4.10), (5.4.12) a (5.4.13) provedli úpravu:

$$S_{12} = \frac{\operatorname{isinh}(A)}{N^{(g)}B} = \frac{\mathrm{i}A}{N^{(g)}B} = \mathrm{i}\frac{\omega}{c}t,$$

$$S_{21} = -\mathrm{i}N^{(g)}B\sinh(A) = -\mathrm{i}N^{(g)}AB,$$

$$S_{34} = \frac{\mathrm{i}B\sinh(A)}{N^{(g)}} = \frac{\mathrm{i}AB}{N^{(g)}},$$

$$S_{43} = \frac{\mathrm{i}N^{(g)}\sinh(A)}{B} = -\mathrm{i}\left(N^{(g)}\right)^2\frac{\omega}{c}t.$$
(5.4.15)

Frekvenčním vazebním médiem je vzduch. V tomto případě:

$$N^{(g)} = 1 \tag{5.4.16}$$

a charakteristická matice vazebního gapu potom nabývá tvaru:

$$S^{(g)} = \begin{bmatrix} \cosh(A) & \frac{i\sinh(A)}{B} & 0 & 0\\ -iB\sinh(A) & \cosh(A) & 0 & 0\\ 0 & 0 & \cosh(A) & iB\sinh(A)\\ 0 & 0 & -\frac{i\sinh(A)}{B} & \cosh(A) \end{bmatrix}.$$
 (5.4.17)

Jestliže navíc uplatníme ultratenkou aproximaci, dostáváme (pro vzduchový gap):

$$S^{(g)} = \begin{bmatrix} 1 & i\frac{\omega}{c}t & 0 & 0\\ -iAB & 1 & 0 & 0\\ 0 & 0 & 1 & iAB\\ 0 & 0 & -i\frac{\omega}{c}t & 1 \end{bmatrix}.$$
 (5.4.18)

U prvků charakteristických matic (5.4.17) a (5.4.18) dosadíme ve vztazích pro A, B (5.4.6) a (5.4.7) hodnotu indexu lomu prostředí gapu rovnu jedné (5.4.16).

5.4.2 Charakteristická matice anizotropního gaputransverzální uspořádání

Tato charakteristická matice byla odvozena v kapitole 5.3-viz prvky (5.4.9):

$$S^{(g)} = \begin{bmatrix} \cosh(\beta^{+}) & \frac{i\sinh(\beta^{+})}{N_{z1}^{(g)}} & 0 & 0 \\ \frac{N_{z1}^{(g)}\sinh(\beta^{+})}{i} & \cosh(\beta^{+}) & 0 & 0 \\ 0 & 0 & \cosh(\beta^{-}) - \frac{N_{y}\varepsilon_{1}^{(g)}}{N_{z3}^{(g)}\varepsilon_{0}^{(g)}}\sinh(\beta^{-}) & \frac{i(\varepsilon_{0}^{(g)}-N_{y}^{2})\sinh(\beta^{-})}{N_{z4}^{(g)}\varepsilon_{0}^{(g)}} \\ 0 & 0 & \frac{iN_{z3}^{(g)}\varepsilon_{0}^{(g)}\sinh(\beta^{-})}{\varepsilon_{0}^{(g)}-N_{y}^{2}} + \frac{N_{y}^{2}\varepsilon_{1}^{(g)^{2}}\sinh(\beta^{-})}{(\varepsilon_{0}^{(g)}-N_{y}^{2})iN_{z3}^{(g)}\varepsilon_{0}^{(g)}} & \cosh(\beta^{-}) - \frac{N_{y}\varepsilon_{1}^{(g)}\sinh(\beta^{-})}{N_{z4}^{(g)}\varepsilon_{0}^{(g)}} \end{bmatrix} .4.19$$

kde (viz kapitola 5.3):

$$\beta^{+} = \frac{\omega}{c} N_{z1}^{(g)} t,$$

$$\beta^{-} = \frac{\omega}{c} N_{z3}^{(g)} t,$$

$$N_{z1}^{(g)} = \left(\varepsilon_{0}^{(g)} - N_{y}^{2}\right),$$

$$N_{z2}^{(g)} = -N_{z1}^{(g)},$$

$$N_{z3}^{(g)} = \left(2\varepsilon_{0}^{(g)}\right)^{-1} \left\{ + \left[4\varepsilon_{0}^{(g)^{2}} \left(\varepsilon_{0}^{(g)} - N_{y}^{2}\right) - 4\varepsilon_{1}^{(g)^{2}} \varepsilon_{0}^{(g)}\right]^{\frac{1}{2}} \right\},$$

$$N_{z4}^{(g)} = -N_{z3}^{(g)}.$$
(5.4.20)

Pro ultratenkou aproximaci můžeme charakteristickou matici gapu v transverzální geometrii zapsat ve tvaru (viz (5.4.16)):

$$S^{(g)} = \begin{bmatrix} 1 & \frac{\mathrm{i}\beta^{+}}{N_{z1}^{(g)}} & 0 & 0\\ \frac{N_{z1}^{(g)}\beta^{+}}{\mathrm{i}} & 1 & 0 & 0\\ 0 & 0 & 1 - b\beta^{-} & a\beta^{-}\\ 0 & 0 & \frac{\beta^{-}}{a} + \frac{N_{y}\varepsilon_{1}^{(g)}}{\mathrm{i}\left(\varepsilon_{0}^{(g)} - N_{y}^{2}\right)}b\beta^{-} & 1 + b\beta^{-} \end{bmatrix},$$
(5.4.21)

kde

$$a = \frac{\left(\varepsilon_{0}^{(g)} - N_{y}^{2}\right)}{\mathrm{i}N_{z3}^{(g)}\varepsilon_{0}^{(g)}},$$

$$b = \frac{N_{y}\varepsilon_{1}^{(g)}}{N_{z3}^{(g)}\varepsilon_{0}^{(g)}}.$$
 (5.4.22)

5.4.3 Tunelový efekt vazebním gapem

Tunelový efekt můžeme popsat relací (5.4.1). V dalším, pro zjednodušení zápisu, označíme

$$S = S^{(g)} = D^{(g)} P^{(g)} \left[D^{(g)} \right]^{-1}, \qquad (5.4.23)$$

s tím, že za nenulové členy matice $S_{11}, S_{12}, S_{21}, S_{22}, S_{33}, S_{34}, S_{43}, S_{44}$ dosadíme, buď ze vztahů (5.4.10) pro izotropní prostředí, nebo použijeme zápisu (5.4.14) (izotropní prostředí s ultratenkou aproximací) nebo (5.4.17) (vzduchový gap), nebo (5.4.18) (vzduchový gap v ultratenké aproximaci), nebo (5.4.19) a (5.4.20) (anizotropní transverzální uspořádání gapu), nebo (5.4.21) a (5.4.22) (anizotropní transverzální uspořádání v ultratenké aproximaci).

Pro specifikaci tunelového efektu (relace (5.4.1)) potřebujeme určit matice $[D^{(p)}]^{-1}$ a $D^{(1)}$:

$$\left[D^{(p)}\right]^{-1} = \left[2N^{(p)}\cos\varphi^{(p)}\right]^{-1} \begin{bmatrix} N^{(p)}\cos\varphi^{(p)} & 1 & 0 & 0\\ N^{(p)}\cos\varphi^{(p)} & -1 & 0 & 0\\ 0 & 0 & N^{(p)} & -\cos\varphi^{(p)}\\ 0 & 0 & N^{(p)} & \cos\varphi^{(p)} \end{bmatrix}, \quad (5.4.24)$$

$$D^{(1)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ N^{(1)}\cos\varphi^{(1)} & -N^{(1)}\cos\varphi^{(1)} & 0 & 0 \\ 0 & 0 & \cos\varphi^{(1)} & \cos\varphi^{(1)} \\ 0 & 0 & -N^{(1)} & N^{(1)} \end{bmatrix}.$$
 (5.4.25)

Ve vztazích (5.4.24) a (5.4.25) jsme předpokládali, že prostředí (p) a (1) jsou dielektrická a izotropní. Na základě relace (5.4.1) můžeme vyjádřit celkovou matici M systému vazební hranol–gap–dielektrický izotropní poloprostor:

$$M = \left[2N^{(p)}\cos\varphi^{(p)}\right]^{-1}$$

 $\left[\begin{array}{ccc} S_{11}N^{(p)}\cos\varphi^{(p)} + S_{21} + N^{(1)}\cos\varphi^{(1)}(S_{12}N^{(p)}\cos\varphi^{(p)} + S_{22}) & S_{11}N^{(p)}\cos\varphi^{(p)} + S_{21} - N^{(1)}\cos\varphi^{(1)}(S_{12}N^{(p)}\cos\varphi^{(p)} + S_{22}) & 0 & 0 \\ S_{11}N^{(p)}\cos\varphi^{(p)} - S_{21} + N^{(1)}\cos\varphi^{(1)}(S_{12}N^{(p)}\cos\varphi^{(p)} - S_{22}) & S_{11}N^{(p)}\cos\varphi^{(p)} - S_{21} - N^{(1)}\cos\varphi^{(1)}(S_{12}N^{(p)}\cos\varphi^{(p)} - S_{22}) & 0 & 0 \end{array} \right]$

 $\begin{array}{cccc} 0 & 0 & \cos\varphi^{(1)}(S_{33}N^{(p)} - S_{43}\cos\varphi^{(p)}) - N^{(1)}(S_{34}N^{(p)} - S_{44}\cos\varphi^{(p)}) & \cos\varphi^{(1)}(S_{33}N^{(p)} - S_{43}\cos\varphi^{(p)}) + N^{(1)}(S_{34}N^{(p)} - S_{44}\cos\varphi^{(p)}) \\ 0 & 0 & \cos\varphi^{(1)}(S_{33}N^{(p)} + S_{43}\cos\varphi^{(p)}) - N^{(1)}(S_{34}N^{(p)} + S_{44}\cos\varphi^{(p)}) & \cos\varphi^{(1)}(S_{33}N^{(p)} + S_{43}\cos\varphi^{(p)}) + N^{(1)}(S_{34}N^{(p)} + S_{44}\cos\varphi^{(p)}) \\ \end{array} \right] (5.4.26)$

Vidíme tedy, že celková matice systému v našem případě se dá vyjádřit ve tvaru:

Konkrétní vyjádření jednotlivých prvků matice M, jak je uvedeno výše, závisí na charakteru vazebního gapu (izotropní, anizotropní) a jeho geometrii (standardní tloušťka, ultratenký gap). Z této skutečnosti potom také vyplývají příslušné reflexní a transmisní koeficienty pro zkoumanou strukturu.