Composite Fe_xO_v/TiO₂ powders – microstructure and magnetic properties

O. Životský¹, J. Seidlerová¹, I. Šafařík², J. Luňáček³, M. Šafaříková², K. M. Kutláková¹, Y. Jirásková⁴

¹Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic ²Institute of Nanobiology and Structural Biology of GCRC AS CR, České Budějovice, Czech Republic ³Institute of Physics, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic ⁴Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, Czech Republic

AIM: Preparation and characterization of magnetically modified TiO₂ powders to improve the separation from liquids.

Sample preparation

- 0.36 g FeSO₄.7H₂O dissolved in 100 ml of water in a 600-800 ml beaker
- one gram of anatase (TiO₂) was added and a solution of sodium hydroxide dropped slowly under mixing until the pH reached the value 10-12
- suspension diluted up to 200 ml with water and treated for 10 minutes in standard kitchen microwave oven (700 W, 2450 MHz) at the maximum power
- magnetically responsive composite with iron oxides captured using an appropriate magnetic separator or NdFeB magnet and dried at cca 60°C

sample	Fe content wt. %	FeO content wt. %	SSA m²g ⁻¹	Mean diameter μm
anatase	< 0.001	< 0.001	84.9	3.88
magn. modified anatase	6.47±0.25	0.43±0.05	173	3.51

Table 1: Total content of Fe, Fe^{II} (expressed as content of FeO), the specific surface area, and mean diameter of non-magnetic and magnetic anatase particles.

Lin (Counts)

Experimental techniques

• SEM (Scanning Electron Microscopy) – PHILIPS XL-30 with spectrometer EDAX

- **XRPD (X-Ray Powder Diffraction)** CoK α irradiation ($\lambda = 0.1789$ nm), Bragg-Brentano geometry, 2θ range 5 ÷ 80°, and 0.02° step
- VSM (Vibrating Sample Magnetometer)
- **thermomagnetic curve (TMC)** from RT up to 924 K in an external magnetic field of 16 kA/m, temperature increase of 5 K/min and Ar atmosphere to prevent oxidation

➢hysteresis loop – up to magnetic field ±1600 kA/m with the step of 1.6 kA/m ≻Henkel plot – $\delta M(H) = 2 \frac{IRM(H)}{IRM(\infty)} - \frac{DCD(H)}{DCD(\infty)} - 1 = 2IRM _ norm(H) - DCD _ norm(H) - 1$ ≻irreversible susceptibility – $\chi_{irr}(H) = \frac{d(M_{irr}(H))}{dH}$, $M_{irr}(H) = \frac{1}{2}(1 - DCD_norm(H))$ $\succ \text{reversible susceptibility} - \chi_{rev}(H) = \frac{d(M_{rev}(H))}{dH}, \ M_{rev}(H) = DCD_\text{norm}(H) - \frac{hys_pos(H)}{IRM(\infty)}$

IRM (Isothermal ReManence) curve, *DCD* (DC Demagnetization) curve

- cooling

heating

Results and discussions

(Am²/kg)

0.8

Magnetization 0,4 0,2 0,0

300

Magnetization and TMC curve

XRPD and **SEM**

- XRPD diffraction pattern confirmed the presence of anatase and Fe₃O₄
- detailed analysis indicates the minor representation of γ -Fe₂O₃ and α -Fe₂O₃
- particles of anatase lower than 10 μ m
- different shape of anatase particles in non-magnetic (SEM figure a)) and magnetic (SEM figure b)) form
- particles of iron oxides present on the surface of anatase particles
- size of iron oxide particles lower than 1 μm

before magnetic modification

after magnetic modification

400 500 600 700 800 900 1000

Temperature (K)

- magnetic parameters before and after the TMC summarized in Table 2
- return to ferromagnetic state and magnetic hardening after the TMC
- three phase transitions detected during heating
- at 480 K the transition of magnetite particles to maghemite is observed
- the second peak about 620-630 K indicates probably transformation of maghemite to hematite
- transition to a paramagnetic state at about 820-850 K

Henkel plot

- changes in *DCD* curve faster than that in *IRM* curve
- prevailing negative (dipolar) interactions, $\delta M(H) < 0$, and demagnetization is stimulated in the sample
- intensity of Henkel plot peak and magnetic field at which the peak is observed give the values -0.32 and 12 kA/m
- magnetic fields (above higher • at kA/m) the decrease of $\delta M(H)$ intensity with increasing *H* is observed

M_c M, H_ kA/m Am²/kg Am²/kg K 0.10 3.38 1.11 сса 850 0.14 0.74 10.77

Table 2: Magnetic parameters obtained from
 the magnetization curve prior (I – left figure) and after (II) the thermomagnetic treatment (RT \rightarrow 924 K \rightarrow RT). H_c – coercive field; M_s – saturation magnetization; M_r – remanent magnetization; T_c – Curie temperature.

Magnetic susceptibility

- SFD curve $\kappa_{irr}(H) blue line exhibits$ typical one-peak behavior
- obtained value of nucleation field H_n is about 8 kA/m
- reversible part of susceptibility $\kappa_{rev}(H)$ – green line – has the highest value close to zero magnetic field
- two approaches for total susceptibility: (i) sum of κ_{irr} (*H*) and κ_{rev} (*H*) – black line and (ii) derivative of the magnetization curve – red line
- low reversible effects are responsible for similar results of both approaches

This work was supported by the Grant Agency of the Czech Republic (Project No. 13709S/P503) and by the project SP 2015/168.